Mechanics of coherent and dislocated island morphologies in strained epitaxial material systems

نویسنده

  • H. T. Johnson
چکیده

A combined analytical and computational model is developed to study the mechanics of strained epitaxial island growth in typical semiconductor systems. Under certain growth conditions in systems with a film/substrate lattice mismatch, deposited material is known to aggregate into islandlike shapes with geometries having arc shaped cross-sections. A two-dimensional model assuming linear elastic behavior is used to analyze an isolated arc shaped island with elastic properties similar to those of the substrate. The substrate is assumed to be much larger than the island. Finite element analysis shows that in order to minimize the total energy, which consists of strain energy, surface energy, and film/substrate interface energy, a coherent island will adopt a particular height-to-width aspect ratio that is a function of only the island volume. It is then shown that for an island with volume greater than a certain critical size, the inclusion of a mismatch strain relieving edge dislocation is favorable. The criterion for the critical size is based on a comparison of the configurational forces acting on the edge of the island in the presence of an edge dislocation. Finally, a finite element calculation combined with an analytical treatment of the singular dislocation fields is used to determine the minimum energy island aspect ratio for the dislocated island/substrate system. The combination of the minimum energy morphology studies for the coherent and dislocated systems with the dislocation nucleation criterion gives a complete model for strained epitaxial island growth which can serve as a basis for interpretation of experiments. © 1997 American Institute of Physics. @S0021-8979~97!02809-0#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equilibrium theory of the Stranski-Krastanov epitaxial morpholow

We present a theory of the equilibrium morphology adopted by N atoms of one material when they crystallize epitaxially onto the surface of a dissimilar material. The discussion is limited to the case of the so-called Stranski-Krastanov morphology where a strongly bound but elastically strained wetting layer coats the substrate. The arrangement of atoms atop this layer is determined by minimizin...

متن کامل

Reading the footprints of strained islands

We report on recent advances in the understanding of surface processes occurring during growth and post-growth annealing of strained islands which may find application as self-assembled quantum dots. We investigate the model system SiGe/Si(0 0 1) by a new approach based on ‘‘reading the footprints’’ which islands leave on the substrate during their growth and evolution. Such footprints consist ...

متن کامل

Mean-field theory of nucleation and growth on strained surfaces

Mean-field nucleation and growth modeling is important for understanding various adsorbatesubstrate systems, particularly in the context of epitaxial growth. Conventional mean-field theory does not take into account non-local interactions, but adparticles may interact with strained islands via long range elastic interactions mediated by the substrate. We show that recent extensions of mean-fiel...

متن کامل

Detection of Polymer Brushes developed via Single Crystal Growth

Single crystals consisting various surface morphologies and epitaxial structures were applied to investigate the effect of other phase regions in the vicinity of a given tethered chains-covered area having a certain molecular weight of amorphous brushes. The designed experiments demonstrated that regardless of the type of surface morphology (patterned and especial mixed-brushes, homo and co...

متن کامل

Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch.

Strain control of epitaxial films using piezoelectric substrates has recently attracted significant scientific interest. Despite its potential as a powerful test bed for strain-related physical phenomena and strain-driven electronic, magnetic, and optical technologies, detailed studies on the efficiency and uniformity of piezoelectric strain transfer are scarce. Here, we demonstrate that full a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997